Tag Archive for: EIM

[sc_vimeo width=”640″ height=”360″ aspect_ratio=”16:9″ video_id=”827408894″ style=”default” position=”right”]

While we now have easy-to-use tools for creating applications, you still need to define what you want to get out of the application you’re making. When you buy pre-configured software, you adapt your process to fit the constraints of the system you just bought. When you buy configurable software, you’re able to create the exact workflow that you need, but you have to first develop a complete understanding of what your needs actually are.

With flexible tools, it’s easy to try out different configurations with your team members. In this short video Director of Sales Engineering, Steve Paff, highlights Locus Software’s configurable hierarchy and how versatile it can be for you.

For more information, click here:

[sc_button link=”https://ltweb-stage.locustec.com/blog/configurable-software-solutions-change-good-right/” text=”Learn more” link_target=”_self” color=”000000″ background_color=”52a6ea”]

 

 

Request a demo

Send us your contact information and a Locus representative will be in touch to discuss your organization’s needs and provide an estimate, or set up a free demo of our enterprise environmental software solutions.

    Name

    Company Email

    Phone

    Tell us about your company's needs

    Locus is committed to preserving your privacy.

    [sc_vimeo width=”640″ height=”360″ aspect_ratio=”16:9″ video_id=”821029206″ style=”default” position=”right”]

    This short how-to video created by Locus Technologies product manager Tricia Walters walks us through how to import data with customized templates. She proves that it is easy to accommodate any file format for easy data import into Locus software. If your company has environmental data in a variety of formats, Locus Technologies has the solution you have been looking for to bring it all together into a single system of record.

    Click the link to learn more.

    [sc_button link=”https://ltweb-stage.locustec.com/blog/environmental-reports-tailored-to-your-needs/” text=”Learn more” link_target=”_self” color=”000000″ background_color=”52a6ea”]

     

     

    Request a demo

    Send us your contact information and a Locus representative will be in touch to discuss your organization’s needs and provide an estimate, or set up a free demo of our enterprise environmental software solutions.

      Name

      Company Email

      Phone

      Tell us about your company's needs

      Locus is committed to preserving your privacy.

      [sc_vimeo width=”640″ height=”360″ aspect_ratio=”16:9″ video_id=”814747329″ style=”default” position=”right”]

      The EIM platform lets the user perform successful searches through various methods. In all searches, the user does not need to specify if the search term is a menu item, help page, or data entity such as parameter or location. Rather, the search bar determines the most relevant results based on the data currently in EIM.

      Locus Technologies President, Wes Hawthorne tells us in this video how useful he finds this feature on the EIM platform.

      [sc_button link=”https://ltweb-stage.locustec.com/blog/quick-search-and-natural-language/” text=”Click here to learn more” link_target=”_self” color=”000000″ background_color=”52a6ea”]

       

       

      Request a demo

      Send us your contact information and a Locus representative will be in touch to discuss your organization’s needs and provide an estimate, or set up a free demo of our enterprise environmental software solutions.

        Name

        Company Email

        Phone

        Tell us about your company's needs

        Locus is committed to preserving your privacy.

        Many in our material-driven culture, particularly in Silicon Valley, assign more excellent value to companies based on how much venture capital or private equity money they have raised or how quickly their companies have grown after initial seeding, and less to founders who bootstrapped their companies from nothing and after that, positioned them for long and steady growth. Although the term means different things in different areas of knowledge, in entrepreneurship, bootstrapping is the process of starting a business with little or no external funding.

        Locus has proven that how much funding a startup company has raised or how quickly it has grown are the wrong metrics to measure a company’s success, particularly in the arena of environmental compliance and data management. We bootstrapped Locus in 1997 and, without outside capital, created a new industry at the intersection of two significant trends before either was a trend: the growth in Internet usage and the growth in the acquisition, storage, and analysis of environmental information. Locus not only defined and pioneered this new space of environmental information management in the cloud but also became an industry leader leaving behind many well-funded startups with “borrowed ideas” and established ERP software companies. At every startup stage, some actions are “right” for the startup to maximize return on time, money, and effort. Fortunately, Locus took the necessary steps that allowed it to weather several recessions and market downfalls.

        While bootstrapping techniques are not just limited to funding, they also apply to how companies are run. By bootstrapping Locus, we created a built-to-last, slow-burn startup that was focused on the singular goal of building a cloud-based environmental data information management system and avoided expending effort on expanding applications that the market did not need or those that we were too dependent on external help. Bootstrapping provided Locus with a strategic roadmap for achieving sustainability through customer funding (i.e., partnering with customers)—if it is essential for Locus, it must be necessary for the customer first. If it is vital for customers, they must pay for a portion of it and have “skin in the game. “We don’t build applications to attract customers. We attract customers with our ideas to build applications together” became Locus’s modus operandi: Locus was born and built with this simple philosophy.

        Once Locus had built a solid customer base, Locus encouraged its paying customers to become consultants who defined the Locus product map. This strategy resulted in a rapid evolutionary expansion of Locus’ software in the marketplace. Crowdsourcing product development from customers with real-world problems has become the cornerstone of Locus’ success in the market.

        Let us digress here to comment on what it takes to build an environmental database management system. In the 1990s, when Dr. Duplan was leading the development of a client-server database for his then-employer (there were no internet-based databases back then), he and others now at Locus attended a trade show where a product called Oracle Environmental or something like that was being marketed. Yes, this is the same Oracle that is now one of the largest software companies in the world, with a market cap in the hundreds of billions, revenues in the tens of billions, profits in the billions, and over 130,000 employees.

        This small group of engineers and scientists wondered how they could compete against a growing behemoth like Oracle with all its programmers and financial resources. They listened to a marketing spiel and took the system for a test drive at Oracle’s booth. Their worries almost immediately vanished. What they saw was characterized by all as a system that was “a mile wide and an inch deep.” It was designed and developed by individuals with no field experience, little or no engineering or scientific expertise, and little understanding of environmental data and data flow. It claimed to touch on many different types of data (which it did) but owing to its lack of depth, it clearly could not work in the real world. Sure enough, the product was gone within a few years.

        In contrast, EIM has been designed and developed by individuals with advanced degrees in civil and environmental engineering, water resources, geology, chemistry, and biology. All who are not solely computer programmers have spent serious time in the field, have overseen the drilling of boreholes and wells, planned and collected samples, verified and validated analytical data, and have created data reports for internal, external entities. These individuals are very cognizant of the vagaries of environmental data.

        When giving demos of the system, we are often peppered with questions such as:

        • How do you calculate the groundwater elevation in a well that has some saline in the groundwater?
        • Can your system handle different units when reporting or calculating statistical measures?
        • Does your system have a means of accommodating dilutions when validating your data?
        • How does your system handle synonyms for parameters or alternate location names?
        • Does your system store TEFs?
        • Does your validation module assign qualifiers, and if so, how?
        • Can your system accommodate changes in well reference elevations?
        • Is your system’s data validation module based on SDGs, analysis lots, sample prep lots, or a combination?
        • To what extent and level are your systems capable of tracking a sample from planning to the grave?

        All these questions make sense to us, and we have an answer to them. Our deep domain expertise in such matters, coupled with our backgrounds in engineering and the sciences and our relevant work experience, has enabled us to work with our customers to build ground-breaking tools and modules for our products that work for all companies.

        While other environmental software companies have come and gone—often after getting much press, only to fizzle out on broken promises and dried-up funding, Locus has never wavered from its path to provide environmental data management services to corporations and government agencies. Despite the absence of a flashy PR machine and VC or PE funding, Locus has continued to be a profitable, independent, and visionary organization, which is now considered one of the top environmental software companies in the world.


        This is the fourth post highlighting the evolution of Locus Technologies over the past 25 years. The first three can be found here and here, and here. This series continues with Locus at 25 Years: Blockchain for Emissions Management.

        Locus Platform

        Locus Platform is the preeminent on-demand application development platform for EHS, ESG, and beyond, supporting many organizations and government institutions. Individual enterprises and governmental organizations trust Locus’s SaaS Platform to deliver robust, reliable, Internet-scale applications. The foundation of Locus Platform (LP) is a metadata-driven software architecture that enables multitenant applications. This unique technology, a significant differentiator between Locus and its competitors, makes the Locus Platform fast, scalable, and secure for any application. What do we mean by metadata-driven? If you look up metadata-driven development on the web, you find the following:  

        “The metadata-driven model for building applications allows an Enterprise to deploy multiple applications on the same hosting infrastructure easily. Since multiple applications share the same Designer and Rendering Engine, the only difference is the metadata created uniquely for each application.” 

        Why Multitenancy is Better than Single

        The Triumph of the Multitenant SaaS model, which Locus brings to the EHS/ESG industry.

        In the case of LP, it is the Designer and Rendering Engine cited in this definition. All LP customers share this engine and use it to create their custom applications. These applications may consist of dashboards, forms to enter data, plots, reports, and so forth, all designed to meet a set of requirements. Instructions (metadata) stored in a database tell the engine how to build these entities, the total of which form a client-designed application.  

        Locus Platform Evolution

        Locus Platform’s evolution to the leading EHS and ESG Platform.

        History has shown that every so often, incremental advances in technology and changes in business models create significant paradigm shifts in the way software applications are designed, built, and delivered to end-users. The invention of personal computers (PCs), computer networking, and graphical user interfaces (UIs) gave rise to the adoption of client/server applications over expensive, inflexible, character-mode mainframe applications. And today, reliable broadband Internet access, service-oriented architectures (SOAs), and the cost inefficiencies of managing dedicated on-premises applications are driving a transition toward the delivery of decomposable, collected, shared, Web-based services called software as a service (SaaS). 

        With every paradigm shift comes a new set of technical challenges, and SaaS is no different. Existing application frameworks are not designed to address the unique needs of SaaS. This void has given rise to another new paradigm shift, namely platform as a service (PaaS). Hosted application platforms are managed environments specifically designed to meet the unique challenges of building SaaS applications and deliver them more cost-efficiently. 

        The focus of Locus Platform is multitenancy, a fundamental design approach that dramatically improves the manageability of EHS and ESG SaaS applications.  Locus Platform is the world’s first PaaS built from scratch to take advantage of the latest software developments for building EHS, ESG, sustainability, and other applications. Locus Platform delivers turnkey multitenancy for Internet-scale applications.  

        Locus Multitenancy

        The Benefits of Multitenancy

        A single shared software and hardware stack across all customers.

        The same applies to many different sets of users; all Locus’ LP applications are multitenant rather than single-tenant. Whereas a traditional single-tenant application requires a dedicated group of resources to fulfill the needs of just one organization, a multitenant application can satisfy the needs of multiple tenants (companies or departments within a company, etc.) using the hardware resources and staff needed to manage just a single software instance. A multitenant application cost-efficiently shares a single stack of resources to satisfy the needs of multiple organizations. 

        Single Tenancy

        Single-tenant apps are expensive for the vendor and the customer.

        Tenants using a multitenant service operate in virtual isolation: Organizations can use and customize an application as though they each have a separate instance. Yet, their data and customizations remain secure and insulated from the activity of all other tenants. The single application instance effectively morphs at runtime for any particular tenant at any given time. 

        The Waste of Single Tenancy

        Single-tenant apps create waste

        Multitenancy is an architectural approach that pays dividends to application providers (Locus) and users (Locus customers). Operating just one application instance for multiple organizations yields tremendous economy of scale for the provider. Only one set of hardware resources is necessary to meet the needs of all users, a relatively small, experienced administrative staff can efficiently manage only one stack of software and hardware, and developers can build and support a single code base on just one platform (operating system, database, etc.) rather than many. The economics afforded by multitenancy allows the application provider to, in turn, offer the service at a lower cost to customers—everyone involved wins. 

        Some attractive side benefits of multitenancy are improved quality, user satisfaction, and customer retention. Unlike single-tenant applications, which are isolated silos deployed outside the reach of the application provider, a multitenant application is one large community that the provider itself hosts. This design shift lets the provider gather operational information from the collective user population (which queries respond slowly, what errors happen, etc.) and make frequent, incremental improvements to the service that benefits the entire user community at once. 

        Two additional benefits of a multitenant platform-based approach are collaboration and integration. Because all users run all applications in one space, it is easy to allow any user of any application varied access to specific data sets. This capability simplifies the effort necessary to integrate related applications and the data they manage.  

        Gartner Chart Showing Locus Technologies

        Gartner recognized the power of the Locus Platform in their early research.

         


        This is the third post highlighting the evolution of Locus Technologies over the past 25 years. The first two can be found here and here. This series continues with Locus at 25 Years: How did we fund Locus?

        Locus EIM

        How did Locus succeed in deploying Internet-based products and services in the environmental data sector? After several years of building and testing its first web-based systems (EIM) in the late 1990s, Locus began to market its product to organizations seeking to replace their home-grown and silo systems with a more centralized, user-friendly approach. Such companies were typically looking for strategies that eliminated their need to deploy hated and costly version updates while at the same time improving data access and delivering significant savings.

        Several companies immediately saw the benefit of EIM and became early adopters of Locus’s innovative technology. Most of these companies still use EIM and are close to their 20th anniversary as a Locus client. For many years after these early adoptions, Locus enjoyed steady but not explosive growth in EIM usage.

        Triumph of the SaaS Model

        E. M. Roger’s Diffusion of Innovation (DOI) Theory has much to offer in explaining the pattern of growth in EIM’s adoption. In the early years of innovative and disruptive technology, a few companies are what he labels innovators and early adopters. These are ones, small in number, that are willing to take a risk, that is aware of the need to make a change, and that are comfortable in adopting innovative ideas. The vast majority, according to Rogers, do not fall into one of these categories. Instead, they fall into one of the following groups: early majority, late majority, and laggards. As the adoption rate grows, there is a point at which innovation reaches critical mass. In his 1991 book “Crossing the Chasm,” Geoffrey Moore theorizes that this point lies at the boundary between the early adopters and the early majority. This tipping point between niche appeal and mass (self-sustained) adoption is simply known as “the chasm.”

        Rogers identifies the following factors that influence the adoption of an innovation:

        1. Relative Advantage – The degree to which an innovation is seen as better than the idea, program, or product it replaces.
        2. Compatibility – How consistent the innovation is with the potential adopters’ values, experiences, and needs.
        3. Complexity – How difficult innovation is to understand and use.
        4. Trialability –  The extent to which the innovation can be tested or experimented with before a commitment to adoption.
        5. Observability – The extent to which the innovation provides tangible results.

        In its early years of marketing EIM, some of these factors probably considered whether EIM was accepted or not by potential clients. Our early adopters were fed up with their data stored in various incompatible silo systems to which only a few had access. They appreciated EIM’s organization, the lack of need to manage updates, and the ability to test the design on the web using a demonstration database that Locus had set up. When no sale could be made, other factors not listed by Rogers or Moore were often involved. In several cases, organizations looking to replace their environmental software had budgets for the initial purchase or licensing of a system but had insufficient monies allocated for recurring costs, as with Locus’s subscription model. One such client was so enamored with EIM that it asked if it could have the system for free after the first year. Another hurdle that Locus came up against was the unwillingness of clients at the user level to adopt an approach that could eliminate their co-workers’ jobs in their IT departments. But the most significant barriers that Locus came up against revolved around organizations’ security concerns regarding the placement of their data in the cloud.

        LocusFocus

        One of the earliest versions of EIM

        Oh, how so much has changed in the intervening years! The RFPs that Locus receives these days explicitly call out for a web-based system or, much less often, express no preference for a web-based or client-server system. We believe this change in attitudes toward SaaS applications has many root causes. Individuals now routinely do their banking over the web. They store their files in Dropbox and their photos on sites like Google Photos or Apple and Amazon Clouds. They freely allow vendors to store their credit card information in the cloud to avoid entering this information anew every time they visit a site. No one who keeps track of developments in the IT world can be oblivious to the explosive growth of Amazon Web Services (AWS), Salesforce, and Microsoft’s Azure. We believe most people now have more faith in the storage and backup of their files on the web than if they were to assume these tasks independently.

        Locus EIM

        An early update to EIM software

        Changes have also occurred in the attitudes of IT departments. The adoption of SaaS applications removes the need to perform system updates or the installation of new versions on local computers. Instead, for systems like EIM, updates only need to be completed by the vendor, and these take place at off-hours or at announced times. This saves money and eliminates headaches. A particularly nasty aspect of local, client-server systems is the often experienced nightmare when installing an updated version of one application causes failures in others that are called by this application. None of these problems typically occur with SaaS applications. In the case of EIM, all third-party applications used by it run in the cloud and are well tested by Locus before these updates go live.

        Locus EIM

        Locus EIM continues to become more streamlined and user friendly over the years.

        Yet another factor has driven potential clients in the direction of SaaS applications, namely, search. Initially, Locus was primarily focused on developing software tools for environmental cleanups, monitoring, and mitigation efforts. Such efforts typically involved (1) tracking vast amounts of data to demonstrate progress in the cleanup of dangerous substances at a site and (2) the increased automation of data checking and reporting to regulatory agencies.

        Locus EIM

        Locus EIM handles all types of environmental data.

        Before systems like EIM were introduced, most data tracking relied on inefficient spreadsheets and other manual processes. Once a mitigation project was completed, the data collected by the investigative and remediation firms remained scattered and stored in their files, spreadsheets, or local databases. In essence, the data was buried away and was not used or available to assess the impacts of future mitigation efforts and activities or to reduce ongoing operational costs. Potential opportunities to avoid additional sampling and collection of similar data were likely hidden amongst these early data “storehouses,” yet few were aware of this. The result was that no data mining was taking place or possible.

        Locus EIM in 2022

        Locus EIM in 2022

        The early development of EIM took place while searches on Google were relatively infrequent (see years 1999-2003 below). Currently, Google processes 3.5 billion searches a day and 1.2 trillion searches per year. Before web-based searches became possible, companies that hired consulting firms to manage their environmental data had to submit a request such as “Tell me the historical concentrations of Benzene from 1990 to the most recent sampling date in Wells MW-1 through MW-10.” An employee at the firm would then have to locate and review a report or spreadsheet or perform a search for the requested data if the firm had its database. The results would then be transmitted to the company in some manner. Such a request need not necessarily come from the company but perhaps from another consulting firm with unique expertise. These search and retrieval activities translated into prohibitive costs and delays for the company that owned the site.

        Google Search Growth

        Google Searches by Year

        Over the last few decades, everyone has become dependent on and addicted to web searching. Site managers expect to be able to perform their searches, but honestly, these are less frequent than we would have expected. What has changed are managers’ expectations. They hope to get responses to requests like those we have imagined above in a matter of minutes or hours, not days. They may not even expect a bill for such work. The bottom line is that the power of search on the web predisposes many companies to prefer to store their data in the cloud rather than on a spreadsheet or in their consultant’s local, inaccessible system.

        The world has changed since EIM was first deployed, and as such, many more applications are now on the path, that Locus embarked on some 20 years ago. Today, Locus is the world leader in managing on-demand environmental information. Few potential customers question the merits of Locus’s approach and its built systems. In short, the software world has caught up with Locus. EIM and LP have revolutionized how environmental data is stored, accessed, managed, and reported. Locus’ SaaS applications have long been ahead of the curve in helping private, and public organizations manage their environmental data and turn their environmental data management into a competitive advantage in their operating models.

        We refer to the competitive advantages of improved data quality and flow and lower operating costs. EIM’s Electronic Data Deliverable (EDD) module allows for the upload of thousands of laboratory results in a few minutes. Over 60 automated checks are performed on each reported result. Comprehensive studies conducted by two of our larger clients show savings in the millions gained from the adoption of EIM’s electronic data verification and validation modules and the ability of labs to load their EDDs directly into a staging area in the system. The use of such tools reduces much of the tedium of manual data checking and, at the same time, results both in the elimination of manually introduced errors and the reduction of throughput times (from sampling to data reporting and analysis). In short, the adoption of our systems has become a win-win for companies and their data managers alike.


        This is the second post highlighting the evolution of Locus Technologies over the past 25 years. The first can be found here. This series continues with Locus at 25 Years: Locus Platform, Multitenant Architecture, the Secret of our Success.

        Locus Environmental Information Management (EIM) is the leading cloud-based application for managing and reporting environmental data. EIM allows users to gain control and insights into any analytical data, automate laboratory and field data collection, and ditch the patchwork of paper forms, spreadsheets, and disjointed databases for a centralized system. We have highlighted 5 key usability features that allow users to get the most out of their investment.

        Locus Usability - Easy Searches

        Easy Searching

        Throughout EIM, users have many opportunities to create search criteria, then pull up the records that match their data filters. A recent addition to EIM has been well received as it is a game-changer for simplicity. Located to the right of the main menu is a search box. Type in the name of a parameter, then click the resulting View Parameter link. You will see all the relevant information on the parameter, including parameter type, whether it is an aggregate parameter or not, site assignment, molecular weight, toxicity equivalence factor, and so forth. Click the View Matching Field Sample Results link, and you will see all the lab results that are stored in EIM for your selected site and analyte. If the parameter is a field measurement, you will see all applicable field measurements. If a parameter can be either a field measurement or lab analyte, you will see both field readings and laboratory results for the parameter.

        Suppose your entry in the search box is a sampling location rather than the name of a parameter. In that case, you will see matching field measurements, sample collection data, analytical results, and groundwater readings for the indicated location.

        Locus Usability - Rolling Upgrades

        Rolling Upgrades

        Think of the frustration your users or administrators may have experienced graduating from Windows XP to Windows 7 and 8 then 10. We guarantee this will not be repeated with our suite of products. Our Software has no version numbers. Rolling upgrades (included in License) are performed for brief periods during non-standard working hours. These updates will not hide or bury existing features. Over time, the interface may change to take advantage of new tools, but this will be done in a measured manner to improve the user experience. What we strive for is to never have a formerly working function break. If you have a recent vintage browser, you should have access to all functionality that comes with our Software both before and after a release.

        In line with this advantage of our products, Locus is not dependent on maintaining links to other software packages. This is not the case for some of our competitors who rely on links to third-party packages to perform data validation, plotting, and reporting.

        Locus Usability - User Empowerment

        User Empowerment

        Almost all of the tasks that are required to manage our products can be done by our customers. This includes adding new users, permissions, and roles; new valid values; new action limits and screening criteria; new custom reports; editing or deleting groups of records; adding new tables to audit; and creating new EDD formats. The few tasks that Locus must be involved include rollbacks of the database, adding new custom fields and data checks, and developing new functionalities.

        Customers who adopt EIM typically replace a series of spreadsheets that have grown more unwieldy by the year or a homegrown database built with a lower-end product like Access. The keepers or administrators of these spreadsheets and homegrown databases are sometimes concerned about losing access and control. There is no doubt that a cloud-based system that multiple clients access must have rigid controls in place to assure data integrity and completeness. Still, we go to great lengths to accommodate “power users,” allowing them to run their SQL statements in our Custom Query module. This tool is widely used and appreciated by users who formerly managed in-house databases at DOE facilities, large water utilities, environmental consultancies, and leading oil and chemical companies. Finally, and most importantly, Locus is a partner with our customers; if you are not successful with EIM, no one “wins.”

        Locus Usability - User Interface

        Interface Consistency and Simplicity: EIM Grids

        The basic grid that EIM uses to display data is pervasive throughout the system, appearing in multiple places under each of the Setup, Field, Input, Analysis, Reporting, and Visualization main menu options. This grid is mighty. With it, you can filter on individual columns by clicking on a list of values below the column header. You can also sort the values in any column by clicking on an up or down arrow in the column header. You can choose to display 10–1000 records at a time. Other features include an advanced search option, the ability to reorder/select/deselect columns, and the opportunity to export the data displayed in the grid using any of the following export types – CSV, Delimited, Excel, PDF, KMZ, Shapefile, or XML – or you can copy the dataset to your clipboard. The power and ease of use of this grid, coupled with its presence throughout EIM, make the system easy to learn and use for users of all ability levels.

        The usability of the grid is taken to a new level in several places in EIM, where you pull up a set of analytical records that meet the selection criteria that you have specified. When you then click on the map icon in the bottom left corner of the grid, EIM takes you directly to Locus’ GIS module, where the results pulled up on the grid are displayed on a map of your site next to their sampling locations.

        Locus Usability - Save and Reuse Work

        Saving and Reusing Your Work

        While you can often get to the data you need in EIM in a few steps, this is not always the case. Your selection criteria may be complicated, involving multiple fields and entries in the database. Most grids have a default set of fields that are displayed in a predetermined order. You may prefer to reorder these, include additional fields, or remove some of the default selections. If you need a highly formatted instead of a simple tabular report that does not yet exist in EIM, you will need to spend more time inputting the specifications for the report. How can you minimize your effort? You can do so by naming and then saving your selections for repeated use at later times. When you do so, you must tell EIM whether these saved inputs are for private or public use. This feature of EIM saves time, reduces keystrokes, and prevents mistakes (get it right once, then reuse as needed). And, enhances user adoption as power users can create and share the reports their users need most often.

        [sc_button link=”https://ltweb-stage.locustec.com/applications/environmental-information-management/” text=”Learn more about Locus EIM” link_target=”_self” centered=”1″]

        The recent year of lockdowns pushed many daily activities into the virtual world. Work, school, commerce, the arts, and even medicine have moved online and into the cloud. As a result, considerably more resources and information are now available from an internet browser or from an application on a handheld device. To navigate through all this content and make sense of it, you need the ability to quickly search and get results that are most relevant to your needs.

        You can think of the web as a big database in the cloud. Traditionally, database searches were done using a precise syntax with a standard set of keywords and rules, and it can be hard for non-specialists to perform such searches without learning programming languages. Instead, you want to search in as natural a matter as possible. For example, if you want to find pizza shops with 15 miles of your house that offer delivery, you don’t want to write some fancy statement like “return pizza_shop_name where (distance to pizza shop from my house < 15 miles) and (offers_delivery is true). You just want to type “what pizza shops within 15 miles of my house offer delivery?” How can this be done?

        Search Engines

        Enter the search engine. While online search engines appeared as early as 1990, it wasn’t until Yahoo! Search appeared in 1995 that their usage became widespread. Other engines such as Magellan, Lycos, Infoseek, Ask Jeeves, and Excite soon followed, though not all of them survived. In 1998, Google hit the internet, and it is now the most dominant engine in use. Other popular engines today are Bing, Baidu, and DuckDuckGo.

        Current search engines compare your search terms to proprietary indexes of web page and their content. Algorithms are used to determine the most relevant parts of the search terms and how the results are ranked on the page. Your search success depends on what search terms you enter (and what terms you don’t enter). For example, it is better to search on ‘pizza nearby delivery’ than ‘what pizza shops that deliver are near my house’, as the first search uses less terms and thus more effectively narrows the results.

        Search engines also support the use of symbols (such as hyphens, colons, quote marks) and commands (such as ‘related’, ‘site’, or ‘link’) that support advanced searches for finding exact word matches, excluding certain results, or limiting your search to certain sites. To expand on the pizza example, support you wanted to search for nearby pizza shops, but you don’t want to include Nogud Pizza Joints because they always put pineapple on your pizza. You would need to enter ‘pizza nearby delivery -nogud’. In some ways, with the need to know special syntax, searching is back where it was in the old database days!

        Search engines are also a key part of ‘digital personal assistants’, or programs that not only perform searches but also perform simple tasks. An assistant on your phone might call the closest pizza shop so you can place an order, or perhaps even login to your loyalty app and place the order for you. There is a dizzying array of such assistants used within various devices and applications, and they all seem to have soothing names such as Siri, Alexa, Erica, and Bixby. Many of these assistants support voice activation, which just reinforces the need for natural searches. You don’t want to have to say “pizza nearby delivery minus nogud”! You just want to say “call the nearest pizza shop that does delivery, but don’t call Nogud Pizza”.

        Search engine and digital personal assistant developers are working towards supporting such “natural” requests by implementing “natural language processing”. Using natural language processing, you can use full sentences with common words instead of having to remember keywords or symbols. It’s like having a conversation as opposed to doing programming. Natural language is more intuitive and can help users with poor search strategies to have more successful searches.

        Furthermore, some engines and assistants have artificial intelligence (AI) built in to help guide the user if the search is not clear or if the results need further refinement. What if the closest pizza shop that does delivery is closed? Or what if a slightly farther pizza place is running a two-for-one special on your favorite pizza? The built-in AI could suggest choices to you based on your search parameters combined with your past pizza purchasing history, which would be available based on your phone call or credit charge history.

        Searching in Locus EIM

        The Locus team recently expanded the functionality of the EIM (Environmental Information Management) search bar to support different types of data searches. If a search term fits several search types, all are returned for the user to review.Locus EIM Quick Search

        • Functionality searches: entering a word that appears in a menu or function name will return any matching menu items and functions. For example, searching for ‘regulatory exports’ returns several menu items for creating, managing, and exporting regulatory datasets.
        • Help searches: entering a word or phrase that appears in the EIM help files will return any matching help pages. For example, ‘print a COC’ returns help pages with that exact phrase.
        • Data searches: entering a location, parameter, field parameter, or field sample will return any matching data records linked with that entity. For example, searching for the parameter ‘tritium’ returns linked pages showing parameter information and all field sample results for that parameter. Searching for the location ‘MW-1’ returns linked pages showing all field samples, groundwater levels, field measurements, and field sample results at the location.

        EIM lets the user perform successful searches through various methods. In all searches, the user does not need to specify if the search term is a menu item, help page, or data entity such as parameter or location. Rather, the search bar determines the most relevant results based on the data currently in EIM. Furthermore, the search bar remembers what users searched for before, and then ranks the results based on that history. If a user always goes to a page of groundwater levels when searching for location ‘MW-1’, then that page will be returned first in the list of results. Also, the EIM search bar supports common synonyms. For example, searches for ‘plot’, ‘chart’, and ‘graph’ all return results for EIM’s charting package.

        Locus EIM Chart Search

        By implementing the assistance methods described above, Locus is working to make searching as easy as possible. As part of that effort, Locus is working to add natural language processing into EIM searches. The goal is to let users conduct searches such as ‘what wells at my site have benzene exceedances’ or perform tasks such as ‘make a chart of benzene results’ without having to know special commands or query languages.’

        How would this be done? Let’s set aside for now the issues of speech recognition – sadly, you won’t be talking to EIM soon! Assume your search query is ‘what is the maximum lead result for well 1A?’

        • First, EIM extracts key terms and modifiers (this is called entity recognition). EIM would extract ‘maximum’, ‘lead’, ‘result’, ‘well’, and ‘1A’, while ignoring connecting words such as ‘the’ or ‘for’.
        • Then, EIM categorizes these terms. EIM would be ‘trained’ via AI to know ‘lead’ is mostly used in environmental data as a noun for the chemical parameter, and not a verb. ‘Result’ refers to a lab result, and ‘well’ is a standard sampling location type.
        • EIM then runs a simple query and gets the maximum lead result for location 1A.
        • Finally, EIM puts the answer into a sentence (‘The maximum lead result at location 1A is 300 mg/L on 1/1/2020’) with any other information deemed useful, such as the units and the date.

        A similar process could be done for tasks such as ‘make a chart of xylene results’. In this case, however, there is too much ambiguity to proceed, so EIM would need to return queries for additional clarifications to help guide the user to the desired result. Should the chart show all dates, or just a certain date range? How are non-detects handled? Which locations should be shown on the chart? What if the database stores separate results for o-Xylene, m,p-Xylene, plus Xylene (total)? Once all questions were answered, EIM could generate a chart and return it to the user.

        Locus EIM Search Results

        Natural language is the key to helping users construct effective searches for data, whether in EIM, on a phone, or in the internet. Locus continues to improve EIM by bringing natural language processing to the EIM search engine.

        [sc_button link=”https://ltweb-stage.locustec.com/applications/environmental-information-management/” text=”Learn more about Locus EIM” link_target=”_self” color=”#ffffff” background_color=”#52a6ea” centered=”1″]


        [sc_image width=”150″ height=”150″ src=”16303″ style=”11″ position=”centered” disable_lightbox=”1″ alt=”Dr. Todd Pierce”]

        About the Author—Dr. Todd Pierce, Locus Technologies

        Dr. Pierce manages a team of programmers tasked with development and implementation of Locus’ EIM application, which lets users manage their environmental data in the cloud using Software-as-a-Service technology. Dr. Pierce is also directly responsible for research and development of Locus’ GIS (geographic information systems) and visualization tools for mapping analytical and subsurface data. Dr. Pierce earned his GIS Professional (GISP) certification in 2010.

        Attention all water providers: the EPA’s UCMR 5 list includes 30 contaminants (29 PFAS and lithium) that both small and large water systems have to test for and report. Can your current environmental solution handle it?

        Locus EIM environmental software can handle new chemicals and analyses seamlessly. Both the standard Locus EIM configuration and the Locus EIM Water configuration (specially tailored to water utilities) are built with ever-changing regulations in mind.

        We’ve put together some helpful background and tips for water providers preparing for UCMR 5 monitoring.

        What water providers need to know

        • The fifth and latest list (UCMR 5) was published on March 11, 2021, and includes 30 new chemical contaminants that must be monitored between 2023 and 2025 using specified analytical methods.
        • SDWA now requires that UCMR include all large PWSs (serving >10,000 people), all PWSs serving between 3,300 and 10,000 people, and a representative sample of PWSs serving fewer than 3,300 people.
        • Large systems must pay for their own testing, and US EPA will pay for analytical costs for small systems.
        • Labs must receive EPA UCMR approval to conduct analyses on UCMR 5 contaminants.

        EPA UCMR 5 Infographic

        [sc_icon icon=”download” shape=”square” size=”small” link=”https://ltweb-stage.locustec.com/wp-content/uploads/2021/03/locus_infographic_ucmr5.jpg” link_target=”_self”] Download Infographic

        What’s the UCMR and why are some contaminants unregulated?

        In 1996, Congress amended the Safe Drinking Water Act with the Unregulated Contaminant Monitoring Rule (UCMR). Under this new rule, US EPA can require water providers to monitor and collect data for contaminants that may be in drinking water but don’t have any health-based standards set (yet) under the SDWA.

        More than 150,000 public water systems are subject to the SDWA regulations. US EPA, states, tribes, water systems, and the public all work together to protect the water supply from an ever-growing list of contaminants.

        However, under the UCMR, US EPA is restricted to issuing a new list every five years of no more than 30 unregulated contaminants to be monitored by water providers.

        This helps reduce the burden on water providers, since monitoring and testing for the existing long list of regulated contaminants already requires a significant investment of time and resources.

        Throughout the course of this monitoring, US EPA can determine whether the contaminants need to be officially enforced— but this would require regulatory action, routed through the normal legislative process.

        Tips for managing UCMR in Locus EIM logo

        • DO use EIM’s Sample Planning module to set your sample collection schedule ahead of time, as requirements vary and are on specific schedules
        • DO take advantage of EIM’s sample program features to track and manage UCMR data, or consider using a dedicated location group to track results, keeping them separate and easy to find for CCR reporting.
        • DON’T worry about adding in new analytical parameters in advance. With EIM’s EDD loader, you can automatically add them when the data arrive from the laboratory.

        Contact your Locus Account Manager for help setting up your EIM database in advance of your sampling schedule, and we’ll make sure you’re equipped for UCMR 5!

        Not yet a customer? Send us a quick note to schedule a call or a demo to find out how Locus software can completely streamline your water sampling and reporting.

        [sc_button link=”#eimquote” text=”Get a demo of Locus EIM” link_target=”_self” centered=”1″]

         

        More helpful links:

         

        [sc_fullwidth background_image=”15039″ background_style=”cover” background_position_horizontal=”center” background_position_vertical=”top” video_background_acpect_ratio=”16:9″ container=”1″]

        Get a demo

          Name

          Company Email

          Phone

          Tell us about your company's needs

          Locus is committed to preserving your privacy.

          [/sc_fullwidth]

           

           

          Maybe you are a user of Locus’ Environmental Software (EIM) and are looking to get more out of our product. Or perhaps you are using another company’s software platform and looking to make a switch to Locus’ award-winning solution. Either way, there are some features that you may not know exist, as Locus software is always evolving by adding more functionality for a range of customer needs. Here are five features of our environmental software that you may not know about:

          1. APIs for Queries

          Locus expanded the EIM application programming interface (API) to support running any EIM Expert Query. Using a drag and drop interface, an EIM user can create an Expert Query to construct a custom SQL query that returns data from any EIM data table. The user can then call the Expert Query through the API from a web browser or any application that can consume a REST API. The API returns the results in JSON format for download or use in another program. EIM power users will find the expanded API extremely useful for generating custom data reports and for bringing EIM data into other applications.

          Locus EIM API

          2. Scheduled Queries for Expert Query Tool

          The Expert Query Builder lets users schedule their custom queries to run at given times with output provided in an FTP folder or email attachment. Users can view generated files through the scheduler in a log grid, and configure notifications when queries are complete. Users can scheduled queries to run on a daily, weekly, monthly, or yearly basis, or to run after an electronic data deliverable (EDD) of a specified format is loaded to EIM. Best of all, these queries can be instantly ran and configured from the dashboard.

          Scheduled Queries in Locus EIM

          Scheduled Queries in Locus EIM

          3. Chart Formatting

          Multiple charts can be created in EIM at one time. Charts can then be formatted using the Format tab. Formatting can include the ability to add milestone lines and shaded date ranges for specific dates on the x axis. The user can also change font, legend location, line colors, marker sizes and types, date formats, legend text, axis labels, grid line intervals or background colors. In addition, users can choose to display lab qualifiers next to non-detects, show non-detects as white filled points, show results next to data points, add footnotes, change the y-axis to log scale, and more. All of the format options can be saved as a chart style set and applied to sets of charts when they are created.

          Chart Formatting in Locus EIM

          Chart Formatting in Locus EIM

          4. Quick Search

          To help customers find the correct EIM menu function, Locus added a search box at the top right of EIM. The search box returns any menu items that match the user’s entered search term.

          Locus EIM Quick Search

          Locus EIM Quick Search

          5. Data Callouts in Locus’ Premium GIS Software

          When the user runs the template for a specific set of locations, EIM displays the callouts in Locus’ premium GIS software, GIS+, as a set of draggable boxes. The user can finalize the callouts in the GIS+ print view and then send the resulting map to a printer or export the map to a PDF file.

          Locus GIS+ Data Callouts

          Locus GIS+ Data Callouts

           

          [sc_button link=”/applications/environmental-information-management/” text=”See more features” link_target=”_self” color=”ffffff” background_color=”52a6ea” centered=”1″]

          Tag Archive for: EIM

          Los Alamos National Laboratory adds two new applications to Locus SaaS platform

          MOUNTAIN VIEW, Calif., 5 May 2015 — Locus Technologies (Locus), the industry leader in cloud-based environmental software, announced today that Los Alamos National Laboratory (LANL) has added two new key projects to the Locus EIM Software-as-a-Service (SaaS) contract.

          LANL is a United States Department of Energy (DOE) national laboratory, managed and operated by Los Alamos National Security (LANS), located in Los Alamos, N.M. LANL conducts multidisciplinary research in national security, outer space, renewable energy, medicine, nanotechnology, and supercomputing. LANL is one of three laboratories in the United States at which the government conducts classified work to care for the nation’s nuclear weapons stockpile.

          New work scope areas added to the contract include software applications to support the laboratory’s Multi-Sector General Permit (MSGP) and support for the Automatic Waste Determination process for safe and proper disposal of hazardous and radiological waste streams.

          The original contract between LANL and Locus began in 2011. LANL will continue to use Locus’ SaaS Environmental Information Management software (EIM) to address legacy site compliance and to take a better aggregate view of its operations for environmental stewardship.

          The new graduated symbol and graduated color legend tools allow for creation of sophisticated maps showing environmental data

          MOUNTAIN VIEW, Calif., 11 May 2015 — Locus Technologies (Locus), the leader in cloud-based environmental compliance and information management software, has announced the addition of powerful new data analysis tools to the eGIS portion of its Environmental Information Management (EIM) software. The new tools support creation of graduated color and graduated symbol legends when posting analytical results, groundwater levels, and field measurements to the map.

          With the graduated color tool, when users post data to the map, they have the option to color code the map symbols by having each result placed into one color ‘bin’ based on the result value. Users can classify the results using one of four different methods: equal interval (each bin has same numerical interval with user specified number of bins); defined interval (each bin has same numerical interval with user specified interval); percent (each bin represents the Nth% of the total result range, for example quantiles or quintiles or deciles); or standard deviation (each bin represents the # of standard deviations from the mean for the result value). There are further options for specifying min and max values for the bins and for picking linear or log scales. If users are comparing results to an action limit, they can also classify results based not on the result but on the exceedance factor (result/action limit).

          The graduated symbol tool works the same as the graduated color tool, except instead of color coding results, users can have the symbols change sizes based on the result. By using these new legend tools, users can create sophisticated maps that help visualize their environmental compliance data and quickly see data hotspots or outliers.

           

          ABOUT LOCUS EIM
          The Locus EIM SaaS offers enterprise environmental information management for analytical data for water quality, chemicals, radionuclides, geology and hydrogeology. EIM provides the whole solution and supports workflow from sample planning, collection, analysis, data validation, visualization and reporting. Locus Mobile is fully integrated with EIM and provides for real time field data collection and synchronization with EIM.

          The Locus EIM SaaS will streamline SJWC’s entire water compliance continuum from watershed to water treatment to water quality at its consumer’s tap

          MOUNTAIN VIEW, Calif., 24 February 2015 — Locus Technologies, a leader in environmental and compliance enterprise management software, today announced that San Jose Water Company (SJWC), an investor-owned utility providing water service to a population of approximately one million people in the Santa Clara Valley, has selected Locus as its environmental information management system. SJWC is deploying the Locus EIM SaaS-based software to consolidate and manage its field data collection; water compliance and water quality data; and all its environmental compliance and environmental data. SJWC will also use the Locus EIM to manage its environmental permits for all its sites and facilities.

          “Water quality and environmental compliance are critical business functions at San Jose Water Company,” said Francois Rodigari, Director of Water Quality and Environmental Services. “Locus and its EIM software are giving us, for the first time, the ability to consolidate and access critical information on data related to water quality and environmental compliance in a single repository based on a cloud platform. This comprehensive view of our water system will help us to comprehensively manage all data related to drinking water and environmental compliance, and as a result, bring higher efficiency to our organization.”

          Locus EIM is a comprehensive and configurable software designed to manage mission-critical environmental and sustainability data to help organization organize, manage, report, and visualize sampling, analytical, and subsurface data for compliance and assurance reporting for a variety of vertical markets including water, gas and oil, power generating utilities, and food and beverage.

          “Our mission is to help organization, such as San Jose Water Company, to achieve their environmental stewardship goals by providing them the software tools to control the management of all data points of their water quality and compliance management,” said Neno Duplan, President and CEO of Locus. “Our EIM water quality management cloud-based software for surface water, drinking water, groundwater, and wastewater provides our customers with a highly scalable and a feature rich application that gives water utilities strong analytical power, streamlined field sampling capabilities, mobile collection, and analysis as well as compliance management. We are pleased San Jose Water Company will be utilizing EIM to ensure that their customers are provided with the highest water quality possible.”

           

          ABOUT SAN JOSE WATER
          San Jose Water Company, a wholly owned subsidiary of SJW Corp. and founded in 1866, is an investor-owned water company headquartered in Silicon Valley and is one of the largest and most technically sophisticated urban water system in the United States. SJWC serves over 1 million people in the San Jose metropolitan area comprising about 138 square miles. The utility ensures its buyers with high quality, life sustaining water, with an emphasis on exceptional customer service.

          Locus EIM SaaS Named as Preferred Solution for Environmental Data Management

          MOUNTAIN VIEW, Calif., 10 February 2015 — Locus Technologies, a leader in environmental and EH&S compliance enterprise and sustainability software, today announced that Chevron Environmental Management Company (CEMC), a subsidiary of Chevron Corporation, one of the world’s largest integrated energy companies, has extended its relationship with the company to include contract renewal as well as distinguishing Locus’ award-winning Environmental Information Management (EIM) solution as the system of record for managing environmental-based analytical lab and field data.

          Chevron selected Locus EIM system as its preferred solution after a year-long competitive bidding process that included rigorous proof of concept testing, vendor capability analysis, and usability testing. Locus EIM will provide a scalable SaaS system for sustainable management of environmental analytical lab and field data. Locus EIM will support Chevron’s EMC’s standardized processes to improve environmental data quality, accessibility, and reporting.

          “Locus has supported Chevron with our flagship EIM software since 2003,” said Neno Duplan, CEO and president of Locus Technologies. “Corporations today want to invest into one environmental and sustainability solution that offers scalability, system flexibility, and user friendliness, while at the same time, achieve operational cost reductions and improve their environmental stewardship. Many Fortune 500 companies who need a comprehensive solution designed for sustainability, compliance and reporting rely upon our Locus EIM SaaS solution. We are pleased that Chevron selected EIM as a system of record for their environmental data and information management.”

           

          ABOUT LOCUS EIM
          The Locus EIM SaaS offers enterprise environmental information management for analytical data for water quality, chemicals, radionuclides, geology and hydrogeology. EIM provides the whole solution and supports workflow from sample planning, collection, analysis, data validation, visualization and reporting. Locus Mobile is fully integrated with EIM and provides for real time field data collection and synchronization with EIM.